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Abstract Brassica oleracea L. includes various
types of important vegetables that show extremely
diverse phenotypes. To elucidate the genetic diversity
and relationships among commercial cultivars derived
by different companies throughout the world, we
characterized the diversity and genetic structure of 91
commercial B. oleracea cultivars belonging to six
varietal groups, including cabbage, broccoli, cauli-
flower, kohlrabi, kale and kai-lan. We used 69
polymorphic microsatellite markers showing a total
of 359 alleles with an average number of 5.20 alleles
per locus. Polymorphism information content (PIC)
values ranged from 0.06 to 0.73, with an average of
0.40. Among the six varietal groups, kohlrabi cultivars
exhibited the highest heterozygosity level, whereas
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kale cultivars showed the lowest. Based on genetic
similarity values, an UPGMA clustering dendrogram
and a two-dimensional scale diagram (PCoA) were
generated to analyze genetic diversity. The cultivars
were clearly separated into six different clusters with a
tendency to cluster into varietal groups. Model-based
structure analysis revealed six genetic groups, in
which cabbage cultivars were divided into two sub-
groups that were differentiated by their head shape,
whereas cauliffiower and kai-lan cultivars clustered
together into a single group. Furthermore, we identi-
fied 18 SSR markers showing 27 unique alleles
specific to only one cultivar that can be used to
discriminate 22 cultivars from the others. Our phylo-
genetic and population structure analysis presents new
insights into the genetic structure and relationships
among 91 B. oleracea cultivars and provides valuable
information for breeding of B. oleracea species. In
addition, we demonstrate the utility of SSR markers as
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a powerful tool for discriminating between the culti-
vars. The SSR markers described herein will also be
helpful for Distinctness, Uniformity and Stability
(DUS) test of new cultivars.

Keywords Brassica oleracea L. - Genetic diversity -
Heterozygosity - Microsatellite markers -
Population structure

Introduction

Brassica oleracea L. (CC, 2n = 18) is a member of the
Brassicaceae family with a wide center of origin in the
Mediterranean Basin. The primitive ancestors of mod-
ern B. oleracea were cultivated and selected for several
millennia (Quiros and Farnham 2011), resulting in
diverse phenotypes in several vegetable crops that serve
as important sources of dietary fiber, vitamin C and
anticancer compounds (Fahey and Talalay 1995).
Brassica oleracea includes many subspecies,
which show remarkable morphological diversity with
regard to inflorescences, leaves, stems, roots, and
terminal or apical buds (Paterson et al. 2001). These
diverse cultivated forms consist of 14 taxonomic
groups or varieties that are classified based on their
crop type, including cabbage (B. oleracea L. var.
capitata L.), savoy cabbage (B. oleracea L. var.
sabauda L.), cauliflower (B. oleracea L. var. botrytis
L.), broccoli (B. oleracea L. var. italica Plenck),
Brussels sprout (B. oleracea L. var. gemmifera DC.),
kale (B. oleracea L. var. acephala DC.), thousand
headed kale (B. oleracea L. var. ramosa DC.), scotch
kale (B. oleracea L. convar. acephala (DC.) Alef. var.
sabellica L.), marrow stem kale (B. oleracea L.
convar. acephala (DC.) Alef. var. medullosa L.), palm
kale (B. oleracea L. convar. acephala (DC.) Alef. var.
palmifolia L.), collard (B. oleracea L. var. viridis L.),
kohlrabi (B. oleracea L. var. gongylodes L.), Portu-
guese Tronchuda cabbage (B. oleracea L. var. costata
DC.) and kai-lan (B. oleracea L. var. alboglabra (L.
H. Bailey) Musil) (Diederichsen 2001). Common
cabbage, cauliflower, and broccoli are the most
commonly grown vegetables in this species (Quiros
and Farnham 2011). The extreme morphological
divergence among cultivated B. oleracea subspecies
has resulted from selection for different characteristics
during domestication (Purugganan et al. 2000). More-
over, this morphological diversity in Brassica species
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may be linked to genomic changes associated with
polyploidization and following diploidization (Kia-
nian and Quiros 1992; Lukens et al. 2004).

Genetic diversity studies can provide potential
genetic resources by elucidating genetic information
and relationships between different populations for
crop improvement and facilitating the identification of
diverse parents to cross in hybrid combinations in
order to maximize the expression of heterosis (Nien-
huis and Sills 1992; Smith et al. 1990). Cost-effective
and reliable method to identify cultivars is desirable in
order to differentiate the increasing numbers of new
cultivars and eliminate duplicates from germplasm
collections (Louarn et al. 2007). An effective method
for cultivar identification such as fingerprinting is
essential for distinctness, uniformity and stability
(DUS) testing of new cultivars and for protection of
intellectual property of new cultivars (Lu et al. 2009).

Crop germplasm diversity can be exploited by
numerous techniques such as analyses of morpholog-
ical traits, total seed protein, isozymes, cytological and
biochemical characteristics and various types of
molecular markers. Of those techniques, molecular
markers can serve as powerful and reliable tools for
discerning variations and for studying genetic diver-
sity and evolutionary relationships (Gepts 1993).
Furthermore, molecular markers are not affected by
physiology or the environment; they have been widely
used in cultivar identification and seed purity testing
(Lu et al. 2009).

Recently, genetic diversity and relationships among
and within Brassica species have been examined using
various molecular markers, such as random amplified
polymorphic DNA (RAPD) (Chuang et al. 2004;
Shengwu et al. 2003), restriction fragment length
polymorphism (RFLP) (Santos et al. 1994; Song et al.
1988; Song et al. 1990), sequence-related amplified
polymorphism (SRAP) (Riaz et al. 2001), amplifica-
tion fragment length polymorphism (AFLP) (van
Hintum et al. 2007), inter-simple sequence repeats
(ISSRs) (Lu et al. 2009) and simple sequence repeats
(SSRs) (Hasan et al. 2005; Louarn et al. 2007; Tonguc
and Griffiths 2004). In comparison with other molec-
ular markers, microsatellite markers, also called
simple sequence repeats (SSRs), are the most infor-
mative molecular markers due to their reliability and
abundant multi-allelic forms (Formisano et al. 2012;
Powel et al. 1996). They are well distributed through-
out the genomes of most eukaryotic species and are
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known to be highly variable. Therefore, information
from SSR analysis has been widely used to detect
polymorphism of nuclear genomes among species
(Jarne and Lagoda 1996; Moxon and Wills 1999).

Previously, phylogenetic analysis of 18 B. oleracea
cultivars as representatives of 13 varietal groups was
performed using RFLP markers, and they were
classified into three groups. Group one consisted of
thousand headed kale and kai-lan, and the second
group contained cabbage, collard, kohlrabi and
Portuguese Tronchuda cabbage, whereas group three
was composed of broccoli, marrow stem kale, palm
kale and Brussels sprout (Song et al. 1988). Another
study of nine cultivated and 13 wild type B. oleracea
using RFLP markers showed that cabbage, Portuguese
Tronchuda cabbage and kai-lan were closely related,
while broccoli and cauliflower were clustered
together. Kohlrabi and collard were also found in the
same cluster, whereas thousand headed kale seemed to
be a distinct varietal type (Song et al. 1990).

Seed companies have contributed to the rising
number of Fy hybrid cultivars of Brassica species. The
use of F; hybrid cultivars is preferred due to hybrid
vigor, uniformity, disease resistance, stress tolerance
and good horticultural traits including earliness and
long shelf-life. Genetic diversity based on microsat-
ellite markers for 54 B. oleracea F, hybrid cultivars
belonging to three varietal groups, cabbage, cauli-
flower and broccoli, from eight seed companies,
revealed that cabbage cultivars clustered in two
separate groups, while cauliflower and broccoli culti-
vars clustered less regularly (Tonguc and Griffiths
2004). A more recent analysis identified four major
groups using 59 B. oleracea F; hybrid cultivars
belonging to five varietal groups, broccoli, Brussels
sprout, cabbage, savoy cabbage and cauliflower,
derived from 13 seed suppliers. The first group
contained all ten cauliflower cultivars; group two
was a cluster of red cabbage cultivars, except one, with
one white cabbage cultivar; the third group comprised
all six savoy cabbages, six white cabbages, one each
Brussels sprout and red cabbage, while group four
consisted of all broccoli cultivars, five white cabbages
and nine Brussels sprout cultivars (Louarn et al. 2007).

In the present study, we analyzed genetic diversity
and phylogenetic relationships and determined the
population structure of 91 commercial B. oleracea
cultivars belonging to six varietal groups: cabbage
(B. oleracea var. capitata), broccoli (B. oleracea var.

italica Plenck), cauliflower (B. oleracea var. botrytis),
kohlrabi (B. oleracea var. gongylodes), kale (B.
oleracea var. acephala) and kai-lan (B. oleracea var.
alboglabra), derived from 24 seed companies world-
wide. We identified 69 valuable cross-subspecies
transferrable SSR markers by screening 148 SSR
markers. These markers will be valuable for genetic
study, DUS testing and seed purity testing of the
increasing numbers of commercial F; hybrids and
further selection of parental lines in breeding
programs.

Materials and methods
Plant materials and DNA extraction

Ninety-one commercial B. oleracea cultivars includ-
ing 49 cabbage (B. oleracea var. capitata), 22 broccoli
(B. oleracea var. italica Plenck), five cauliflower
(B. oleracea var. botrytis), nine kohlrabi (B. oleracea
var. gongylodes), three kale (B. oleracea var. acepha-
la) and three kai-lan (B. oleracea var. alboglabra)
cultivars (Table 1) were used for analysis of genetic
diversity and phylogenetic relationships using SSR
markers. Eighty-five out of 91 cultivars were F;
hybrids, whereas six cultivars were inbred lines. All
materials used in this study were purchased from or
kindly provided by seed companies.

Total genomic DNA was extracted from homoge-
nized young leaf tissue, which derived from one
individual plant of each cultivar, according to the
modified cetyltrimethylammonium bromide (CTAB)
method (Allen et al. 2006). The quality and quantity of
the extracted DNA were estimated with a NanoDrop
ND-1000 (NanoDrop Technologies, Inc., Wilming-
ton, DE, USA). The final concentration of each DNA
sample was adjusted to 10 ng/pl for PCR analysis.

SSR analysis

A total of 148 SSR markers were tested to detect
polymorphism among 91 B. oleracea cultivars. Of
those, 104 primer pairs were derived from previous
studies: 61 from the public database (Lowe et al. 2004;
Piquemal et al. 2005) (see http://ukcrop.net/perl/ace/
search/BrassicaDB), three from Louarn et al. (2007),
six prefixed “PBCGSSR” from Burgess et al. (2006),
four prefixed “BRMS” from Suwabe et al. (2002),
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11 prefixed “BnGMS” from Cheng et al. (2009), two
prefixed “nga” from Bell and Ecker (1994), two pre-
fixed “CNU” from Choi et al. (2007), one (CALSSR)
from Smith and King (2000), and 14 prefixed
“sN”, “sR”, “sO” or “sA” from Agriculture and
Agri-Food Canada (http://brassica.agr.gc.ca/index_
e.shtml). Those previously reported markers were
selected randomly from nine linkage groups of B. ol-
eracea maps (Supplementary Table 1). The remaining
44 primer pairs were developed in this study based on
EST sequences. Of which, the ESTs containing poly-
morphic SSR primers were blasted against Arabid-
opsis thaliana (L.) Heynh. database using the
TBLASTX algorithm (http://www.ncbi.nlm.nih.gov/
Blast). The best hits of ESTs were assigned at
expected value <107° (Table 2).

PCR reactions were carried out in a total volume of
10 pl containing 10 ng DNA template, 1x PCR
reaction buffer (Inclone Biotech), 0.2 mM each ANTP
(Inclone Biotech), 0.2 uM each primer and 1 unit Tag
DNA polymerase (Inclone Biotech). Amplifications
were performed under the following conditions: initial
denaturation at 94 °C for 4 min, and then 35 cycles of
30 s denaturation at 94 °C, 30 s annealing at
55-60 °C, 30 s extension at 72 °C, and 10 min at
72 °C for final extension. PCR-amplified products
were separated by 6 % non-denaturing polyacryl-
amide gel electrophoresis using 1x TBE buffer. The
gels were stained with ethidium bromide for 20 min
and DNA bands were visualized under UV light using
the gel documentation system.

Data analysis

The polymorphic bands of each SSR marker were
scored as binary characters for their presence (1) or
absence (0) in the 91 cultivars and the resulting data
were analyzed using NTSYS-PC version 2.1 (Rohlf
2000). Genetic similarity between cultivars was
calculated based on the simple matching coefficient
using the SIMQUAL subprogram of NTSYS-PC.
Cluster analysis was performed using the unweighted
pair group arithmetic mean method (UPGMA) in the
SAHN subprogram of NTSYS-PC. Principal coordi-
nate analysis (PCoA) based on the genetic similarity
matrix was performed using DCENTER and EIGEN
algorithm of the NTSYS-PC software package.

The number of alleles (N,), rare alleles (R,), major
allele frequency (MaF), gene diversity (GD), expected
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heterozygosity (H.) and polymorphic information
content (PIC) values were calculated using PowerMar-
ker version 3.25 (Liu and Muse 2005). Rare allele refers
to alleles with frequencies of less than 5 % among the
91 cultivars and major allele frequency (Map) was
defined as the allele with the highest frequency.

Population structure analysis was performed with
STRUCTURE version 2.3 using genotype data con-
sisting of unlinked markers (Pritchard et al. 2000).
Individuals in the sample were assigned to populations
(genetic groups), or jointly to two or more populations
if their genotypes indicated that they were admixed.
The loci within populations are assumed to be at
Hardy—Weinberg equilibrium and linkage equilib-
rium. The optimum number of populations (K) was
selected by testing K =1 to K =8 using five
independent runs of 10,000 burn-in period length at
fixed iterations of 10,000 with a model allowing for
admixture and correlated allele frequencies (Falush
et al. 2003). In order to determine the best K, the log
likelihood of each K, Ln P(D) or L(K) was calculated,
of which the average of Ln P(D) slightly increased up
to K = 6 and began to plateau at K =7 and K = 8
(Supplementary Fig. 1). Therefore we could not get
the obvious indication of which K value presented the
best fit for the data and the groupings was examined
based on six varietal groups of B. oleracea. Thus
K = 6 was used to determine inferred ancestries of the
91 B. oleracea commercial cultivars.

Results
SSR markers and allele diversity

Out of 148 SSR markers, 78 markers generated
reproducible, clear, distinct and polymorphic ampli-
fication products at one or more loci. Meanwhile, the
other 70 were not valuable: 38 showed no polymor-
phism and the remaining 32 produced unclear bands.
Of the 78 reproducible and polymorphic markers, nine
were excluded from further analysis because they
showed a large proportion of missing data among
accessions (>5 %). Hence, a total of 69 polymorphic
markers were used for the statistical analysis using
PowerMarker (Table 3).

The polymorphic loci showed unique fingerprints
providing a total of 359 alleles for all 91 cultivars. The
number of alleles per locus ranged from two to 14, with
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Table 3 Characteristics of the 69 polymorphic SSR loci across 91 B. oleracea L. cultivars

Locus Number of Number of rare Size range Frequency Gene Observed PIC®

alleles alleles® (bp) of major diversity heterozygosity (He)
alleles® (%)

BoESSR003 5 4 160-180 40 0.26 0.11 0.24
BoESSRO0O12 2 - 382-390 38 0.21 0.23 0.19
PBCGSSRBo2 6 3 180-205 15 0.67 0.18 0.59
BoREM1b 4 2 170-210 38 0.23 0.24 0.22
BoKAH45TR 6 3 170-200 15 0.58 0.36 0.49
BoESSR020 3 1 170-190 34 0.27 0.32 0.24
BoESSR029 3 - 150-155 20 0.49 0.31 0.37
BoESSR031 3 - 290-295 21 0.47 0.62 0.42
BoESSR030 4 - 230-290 19 0.53 0.52 0.46
sR12387 8 5 280-300 18 0.59 0.51 0.54
BoDCTD1 11 7 150-180 22 0.60 0.39 0.56
sN11670 4 2 150-200 28 0.40 0.39 0.33
PBCGSSRBo033 3 - 120-150 23 0.46 0.39 0.35
PBCGSSRBo022 6 3 260-270 30 0.39 0.33 0.36
BoESSR040 4 2 250-280 33 0.31 0.30 0.27
BoESSR037 4 2 330-350 40 0.24 0.15 0.22
BoESSR049 5 3 290-300 40 0.25 0.12 0.23
sR5795 3 2 200-230 46 0.10 0.07 0.10
CB10064 13 10 140-180 16 0.68 0.59 0.65
PBCGSSRBo34 6 2 195-230 22 0.60 0.25 0.53
sR12384 2 - 280-310 39 0.19 0.21 0.17
BoESSR073 7 5 220-260 19 0.56 0.49 0.49
BoESSR074 3 - 214-220 20 0.50 0.41 0.37
BnGMS51 3 1 230-270 36 0.31 0.20 0.26
BoESSRO077 5 2 270-300 26 0.49 0.19 0.39
BRMS-006 2 1 150-155 47 0.06 0.07 0.06
BRMS-034 3 - 140-160 21 0.50 0.19 0.37
CB10267 3 1 120-150 27 0.40 0.54 0.32
CB10005 4 3 250-270 44 0.14 0.08 0.13
CB10172 2 - 210-230 34 0.26 0.31 0.23
BRAS039 4 2 200-240 35 0.31 0.22 0.27
CB10632 3 - 170-180 32 0.38 0.20 0.31
CB10130 2 - 240-295 40 0.18 0.20 0.16
BRAS112 6 3 240-280 34 0.48 0.19 0.43
NalOD11 5 2 170-205 19 0.64 0.23 0.56
0110-D02 11 8 140-210 22 0.62 0.56 0.54
NalOF06 5 2 100-150 20 0.51 0.22 0.39
MR133.1 3 1 240-250 37 0.36 0.03 0.30
CB10427 5 1 150-180 15 0.57 0.40 0.48
CB10288 5 2 200-220 31 0.48 0.18 0.42
0O110-F08 4 2 160-200 38 0.29 0.13 0.26
MR049 9 6 170-290 20 0.64 0.22 0.59
0O113G05 4 2 130-160 32 0.51 0.30 0.45
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Table 3 continued

Locus Number of Number of rare Size range Frequency Gene Observed PIC®
alleles alleles” (bp) of major diversity heterozygosity (H,)
alleles® (%)
CB10109 2 - 250-290 34 0.27 0.32 0.23
O111HO09 10 8 150-230 23 0.59 0.19 0.51
sORF73 14 10 130-200 12 0.73 0.54 0.69
BoESSR106 4 3 200-230 41 0.21 0.14 0.20
sNRH63 8 5 90-160 24 0.54 0.34 0.49
Nal0-D07 2 1 150-200 47 0.13 0.00 0.12
CB10629 4 2 100-150 23 0.46 0.46 0.37
CB10258 7 3 180-200 24 0.61 0.30 0.56
CB10028 14 13 120-190 32 0.48 0.24 0.47
CB10014 5 1 200-220 25 0.56 0.24 0.50
ngalll 9 6 120-160 21 0.64 0.55 0.59
CB10611 8 6 160-180 35 0.42 0.11 0.38
Nal2-Bl11 4 - 150-160 23 0.55 0.24 0.45
BoESSR110 2 1 280-550 47 0.50 0.94 0.37
BnGMS539 4 - 180-200 32 0.60 0.76 0.53
BnGMS326 4 1 270-290 24 0.61 0.74 0.53
Nal0-HO3 3 1 100-120 32 0.32 0.32 0.27
CB10229 4 2 270-295 38 0.61 0.97 0.54
CNU400 4 1 260-290 21 0.74 0.84 0.70
0110-C05 7 2 100-160 18 0.70 0.59 0.66
CALSSR 10 5 140-200 18 0.77 0.93 0.73
CB10435 8 6 140-170 25 0.51 0.36 0.45
BnGMS160 8 3 280-380 20 0.62 0.48 0.58
Nal2-A02 2 - 180-190 40 0.31 0.00 0.27
BnGMS83 6 4 200-240 26 0.59 0.13 0.52
MR216 3 1 170-200 35 0.30 0.23 0.25
Mean 5.20 333 - 28.75 0.45 0.34 0.40

* Rare alleles are defined as alleles with a frequency less than 5 %

° Major allele is defined as the allele with the highest frequency

¢ Polymorphic information content

an average of 5.20 alleles across the 69 loci (Table 3).
Of those, nine loci, i.e. BOESSR012, sR12384, BRMS-
006, CB10172, CB10130, CB10109, Nal0-DO07,
BoESSR110, and Nal2-A02, exhibited only two
alleles among the 91 cultivars, while two loci, SORF73
and CB10028, showed 14 different alleles. Gene
diversity (GD) ranged from 0.06 to 0.77 with an
average of 0.45. The PIC values ranged from 0.06 to
0.73 with an average of 0.40. Among the SSRs,
CALSSR showed the highest value for both PIC (0.73)
and gene diversity (0.77), and BRMS-006 had the
lowest gene diversity and PIC value (0.06).
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The frequency of the major allele at each locus
ranged from 12 % (sORF73) to 47 % (BRMS-006,
Nal0-D07 and BoESSR110). On average, 28.75 % of
the 91 cultivars shared a common major allele at any
given locus. The number of rare alleles, which were
defined as those alleles with a frequency of less than
5 %, varied from one to 13 alleles per locus. Marker
CB10028 exhibited the highest number of rare alleles.
Rare alleles were identified at 54 loci, with an average
of 3.33 per locus (Table 3). Of the 54 SSRs showing
rare alleles, 18 produced 27 unique alleles, each of
which was found in only one specific cultivar and was
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Table 4 Summary of cultivar-specific allele markers (CAMs)

Marker No. of Unique Varietal Representative
alleles alleles type cultivar

BoESSR073 7 alc Cabbage Tropic Sun Plus
CB10267 3 b/b Cabbage Wonder ball
NalOF06 5 a/d Cabbage Han Kwang

b/c Cabbage Han Chun No. 5
CB10611 8 a/d Cabbage Han Chun No. 5
sNRH63 8 b/f Cabbage Jewelry 1698

alg Cabbage Megaton
CALSSR 10 a/d Cabbage Gloria F1
CB10435 8 alc Cabbage Zennith
ngalll 9 c/f Cabbage Red Sun

alc Broccoli KB-052
MR049 9 d/e Broccoli Fighter

e/t Broccoli Tradition
CB10064 13 c/f Broccoli Montop

a/b Kale Este
BnGMS383 6 ala Kale Joeun kale
BoDCTD1 11 ele Kale Joeun kale
BoESSR077 5 ala Kale Este

d/d Kai-lan K3608 Thailand
sORF73 14 f/f Kai-lan K3603 China

b/e Kohlrabi White Rookie
BoREM 1b 4 b/b Kohlrabi Kolibri
0110-D02 11 a/f Kohlrabi Kolibri
BRAS039 4 b/b Kohlrabi Purple King
BRAS112 6 ala Kohlrabi White Rookie

a/b Kohlrabi UFO

b/b Cauliflower  Snow Dream

designated as a cultivar-specific allele marker (CAM)
(Table 4). Among these 18 SSR markers, BRAS112
detected CAMs for three different cultivars (‘White
Rookie’, ‘UFO’ and ‘Snow Dream’), seven SSR
markers including NalOF06, sNRH63, ngalll,
MR049, CB10064, BoESSRO077 and sORF73 detected
two CAMs, and the remaining 10 SSR markers
detected one CAM. Ten CAMs were found for
cabbage cultivars, 4 CAMs were present in broccoli
cultivars, 4 CAMs were in kale cultivars, 6 CAMs
were in kohlrabi cultivars, 2 CAMs were in kai-lan
cultivars, and 1 CAM was in cauliflower. A total of 22
cultivars including nine cabbage, four each kohlrabi
and broccoli, two each kale and kai-lan, and one
cauliflower cultivar could be identified by these 18
cultivar-specific allele markers.

Except for two loci (Nal0-D07 and Nal2-A02), all
loci used in this study could identify heterozygous

individuals across the 91 B. oleracea cultivars. The
proportion of heterozygous cultivars (H,) ranged from
0.03 at MR133.1 to 0.97 at CB10229, with an average
of 0.34 (Table 3).

Genetic diversity and phylogenetic relationships
among 91 cultivars

Phylogenetic analysis using 69 SSR markers clearly
elucidated the relationships among the 91 cultivars
and revealed that all cultivars tended to cluster within
their own varietal groups (Fig. 1). Using a similarity
coefficient of 72 % as the threshold level for UPGMA
clustering, all the cultivars were classified into six
major groups, which coincided with the six varietal
groups except for one kale cultivar ‘Este’ bred by the
Sakata seed company that did not belong to any group
and one kohlrabi cultivar ‘Dongchuan’ bred by the
Konmyeong Noksaeng seed company, which grouped
with kale cultivars. The first group (group I) was a
population of cabbage cultivars that was further
divided into two sub-groups. Group II consisted of a
set of 22 broccoli cultivars; group III held eight
kohlrabi cultivars; group IV contained two kale
cultivars along with the kohlrabi cultivar ‘Dongchu-
an’; group V consisted of five cauliflower cultivars,
and group VI comprised three kai-lan cultivars. The
groupings identified by PCoA were also similar to
those identified by the UPGMA cluster analysis
(Supplementary Fig. 2).

Overall, 89 (97.8 %) cultivars could be differenti-
ated from each other using 69 microsatellite loci,
while the other two cabbage cultivars (‘Charmant’ and
‘GC 60’) gave rise to identical results with those loci.

Cabbage (Group I)

Forty-nine cabbage cultivars formed a cluster (group
I) that was further sub-divided into two sub-groups at a
77 % similarity coefficient. Sub-group I consisted of
28 cabbage cultivars that were dominated by round
head shape with varying maturity, bolting type and
head size characteristics. This sub-group also con-
tained several cultivars displaying cracking tolerance,
an important characteristic in cabbage that can confer
good standing ability in the field. It is interesting to
note that cultivars ‘Charmant’ and ‘GC 60’ showed
identical phenotypic and molecular characteristics
even though they came from two different seed
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Cultivar

8398
Golden Acre
Zhong gan 21
Head Start
Zennith
Green express
New Star Cross
Xi Wang
Charmant
GC 60
Kranti
Vantage Point
Gloria F1
Megaton é1025)
Jewelry 1698
Goody ball-65
Rinda
Tekila
Quisor
Beltis
Jewelry 068
Quartz
Danish Ballhead
Atria
Saint
Blue Vantage
Royal Vantage
Tobia
Green Challenger
Super Coronet
Rareball
Lucky ball
Pruktor F1
Grand 11
Green Nova
Wonder ball
Ogane
Green Coronet
R Hogeol
KY-Cross
Grand KK
Primero
Kai Bi
Red Sun
Tropic Sun Plus
Hayadori
Han chun No. 4
Han Kwan
Han chun ﬂlo. 5
Yuan you qing hua cai
Grace
Super Grace
Yu huang
Green Majic
Marathon
Heritage
BI-15 ?Monaco)
Green Belt
Tradition
Youshou
Subaru
Ironman
KB-052
Castle
Anfree-747
Fighter
Montop
Aosima
Green Dome
Endevour
Heart Land
Korist
Express Forcer
Winner
Worldcol

UFO

White Rookie
Kolibri

Purple King
Dongchuan
Kale

Joeun Kale
Este

Snow Dream
Snow March
White Dream
Orange Dream
Violet Dream
Chi Huajianye
Khanabai

Si Ji Da You

Supplier

IVF, CAAS
India

IVF, CAAS
Seminis
Seminis
Sakata
Tokida
Sakata
Sakata
Golden Seed
Mahyco
Sakata
Ohlsens Enke
Bejo
Jewelry
Golden Seed
Seminis
Syngenta
S{/ngenta
Seminis
Jewelry
Seminis
0SC Seed
Seminis
Seminis
Sakata
Sakata
Seminis
Seminis
Takii
Kaneko
Kaneko
Ohlsens Enke
Chia Tai
Takii
Seminis
Takii

Takii

Takii

Takii

Takii

Bejo
Beijing Tang Yuan
Seminis
Seminis
K_obq[\{ashi
Jing Tian Seed
Asahi

Jing Tian Seed
Tokita

Bejo

Bejo
Hongkong Seed
Sakata

Sakata
Seminis
Syngenta
Sgkgta
Seminis
Sakata
Brolead
Seminis
Mikado-Kyowa
Takii

Takii

Brolead
Syngenta
Sakata

Takii

Takii

Sakata

Bejo

Takii

Takii

Joeun Seed
Seminis
Numhems Korea
Bejo

Joeun Seed
Konmyeong Noksaeng
Joeun Seed
Joeun Seed
Sakata

Takii

Takii

Takii

Takii

Takii
Guangzhou
Chia Tai
China local

]

]

Group I
Cabbage

Group II
Broccoli

Group 111
Kohlrabi

Group IV
Kale

Group V
Cauliflower

Group VI
Kai-lan
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<« Fig. 1 UPGMA cluster dendrogram showing the genetic

relationships among 91 commercial B. oleracea L. cultivars
based on 69 microsatellite loci. Each cultivar is identified by
cultivar number, name and seed supplier

companies, in Japan and India, respectively. Similar
results were found between cultivars ‘Jewelry 068’
and ‘Quartz’, which showed a 99.5 % similarity
coefficient, even though they were from different
breeding companies, Jewelry (China) and Seminis
(Korea), respectively.

Sub-group II of cabbage comprised 21 cultivars,
which also displayed various types of maturity, head
size and bolting. However, the majority of cultivars in
this sub-group (14 cultivars) had a flat head shape, which
differentiated them from sub-group I. Three red cabbage
cultivars, ‘Primero’, ‘Red Sun’ and ‘Kai Bi’, were
closely clustered in this sub-group. Among the other
members in this sub-group, two cultivars, ‘Green
Coronet’ and ‘YR Hogeol’, derived from the same seed
company (Takii) showed the highest similarity (98 %).
This is likely due to the use of parental lines with similar
genetic backgrounds for breeding of the two cultivars.

Broccoli (Group II)

All 22 broccoli cultivars were separated at a genetic
similarity of 83 % and obviously placed in group II.
The members of this group had various types of head
shape, bead size and maturity, and some of these
cultivars were also referred to as being anthocyanin-
free. A medium-maturity cultivar ‘Heart Land’ was
quite distinct in the clustering compared to other
members in this group. Meanwhile, cultivars ‘Mara-
thon’ and ‘Heritage’ showed about a 99 % similarity
coefficient even though they were from different seed
suppliers, Sakata and Seminis, respectively.

Kohlrabi and Kale (Groups Il and IV)

Kohlrabi and kale cultivars were the most closely
related varietal groups that had diverse genetic
backgrounds even though the major cultivars were
separated into group III for kohlrabi and group IV for
kale. Eight out of nine kohlrabi cultivars clustered
together in group III, while the other, ‘Dongchuan’,
was clustered into group IV with the kale cultivars.
‘Dongchuan’ was the most distinct compared to the

other kohlrabi cultivars. Although this cultivar had a
flat head shape and green color, other characteristics,
such as high fiber, early bolting type and late maturity,
were relatively different, consistent with this cultivar
having a different genetic background.

The majority of the kohlrabi cultivars in group III
had a flattish head shape, green color and early to
medium bolting type. Meanwhile, ‘Korist’ had a milky
skin color and the cultivars ‘Kolibri’ and ‘Purple
King’ had red skin. However, their genetic diversity
did not correspond to skin color differences. ‘Purple
King’ was separated from others at about a 72.5 %
similarity coefficient, which might be related to its
phenotype of low fiber because the other cultivars did
not display this characteristic.

Kale cultivars were more diverse than the other
cultivars. In particular, ‘Este’, which had bluish green
leaves, did not belong to any group. Meanwhile, the
two other cultivars, ‘Kale K 3600’ and ‘Joeun kale’,
which had green leaves and heat tolerance, were
clustered into the same group with the kohlrabi
cultivar ‘Dongchuan’ (group IV) at a similarity
coefficient value of 74 %.

Cauliflower and Kai-lan (Groups V and VI)

Cauliflower and kai-lan were grouped independently
as groups V and VI, respectively. However, they
showed a close relationship to each other. Five
cauliflower cultivars from the Takii seed company
showed relatively low diversity. Among them, ‘Violet
Dream’ was separated from others at 77 % genetic
similarity. That coincided with the major phenotype
differences between the cultivars: ‘Violet Dream’
exhibited early maturity, early bolting and violet curd
color, whereas the other cauliflower cultivars showed
medium maturity, high-domed shape and white or
orange curd colors. Three kai-lan cultivars, two from
China and one from Thailand, showed similar genetic
diversity based on molecular genetic analysis.

Population structure analysis

Population structure and inferred ancestry based on
analysis using the STRUCTURE program revealed
that the 91 cultivars belonged to six genetic groups
(C1-C6) (K = 6) (Fig. 2a). Two groups, C1 and C2,
corresponded to the cabbage subgroups I and II that
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(a)

Cl1
Flat head shape cabbage

Cc2
Round head shape cabbage

C3
Broccoli

Cc4
Cauliflower

C5
Kai-lan

C6
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Fig. 2 Population structure analyses of the 91 B. oleracea L.
cultivars. Analysis was carried out using STRUCTURE
software with K set at 6. a Inferred ancestries of the 91 B.
oleracea cultivars based on six genetic groups. Each group is
represented by a different color. 79 cultivars shared over 75 %
ancestry with one of the genetic groups. b Twelve B. oleracea
cultivars that showed admixture (sharing less than 75 %
ancestry)

were identified in the UPGMA cluster analysis
(Fig. 1). The other four groups corresponded to three
varietal groups, broccoli (C3), kohlrabi (C5) and kale
(C6), and the merging of two varietal groups, cauli-
flower and kai-lan, into group C4. Each B. oleracea
varietal group was also examined for membership in
the six genetic groups described above. The proportion
of membership is the average of inferred ancestry
value in each varietal group. Broccoli, cauliflower and
kai-lan had a proportion of membership greater than
90 % in the C3 and C4, whereas those of kohlrabi and
kale were more than 85 % in the C5 and C6. Cabbage
cultivars were divided into two groups with propor-
tions of membership about 37 and 58 % for cabbage
C1 and C2, respectively (Table 5).

The C1 group included 19 cabbage cultivars, of
which ten shared more than 90 % ancestry and other
five had 78-88 % shared ancestry. The remaining four
cultivars were admixed. The C2 group was composed
of 30 cabbage cultivars, of which 21 showed more than
90 % shared ancestry and three cultivars ranged from
77 to 88 %, while the other six cultivars were of mixed
ancestry. The 22 broccoli cultivars clustered in group
C3 had more than 90 % shared ancestry, except
cultivar ‘Heart Land’ which had the lowest shared
ancestry at 81 %. The C4 group, a cluster of
cauliflower and kai-lan cultivars, revealed more than
90 % shared ancestry with the exception of the kai-lan
cultivar ‘K 3603°. The C5 group included nine
kohlrabi cultivars; five of them had more than 90 %
shared ancestry and two other cultivars ranged from 84
to 86 %, whereas the remaining two cultivars showed
mixed ancestry. The C6 group consisted of three kale
cultivars with varying levels of shared ancestry.
Although cultivar ‘Este’ was not designated into any
group based on the UPGMA analysis (Fig. 1), its level
of shared ancestry was the highest (>95 %) compared
to the other two kale cultivars, ‘Joeun kale’ (>85 %)

Table 5 Proportion of membership for each varietal group in each of the six clusters

Given population Inferred cluster

# of individuals

Cl C2 C3 C4 C5 Co
Cabbage 0.371 0.586 0.014 0.003 0.019 0.007 49
Broccoli 0.004 0.002 0.972 0.013 0.005 0.003 22
Cauliflower 0.002 0.001 0.007 0.972 0.017 0.002 5
Kohlrabi 0.023 0.005 0.019 0.021 0.882 0.05 9
Kale 0.073 0.032 0.005 0.005 0.007 0.878 3
Kai-lan 0.055 0.001 0.002 0.932 0.004 0.007 3
Table 6 Genetic differentiation among six varietal groups of B. oleracea L. cultivars
Varietal No. of cultivars Mean no. alleles/  Major allele Mean genetic Mean Mean PIC
group tested locus frequency diversity heterozygosity value
Cabbage 49 3.81 0.32 0.39 0.38 0.34
Broccoli 22 242 0.37 0.28 0.32 0.25
Cauliflower 5 1.80 0.41 0.26 0.23 0.22
Kohlrabi 9 2.81 0.33 0.41 0.41 0.35
Kale 3 1.77 0.39 0.33 0.08 0.27
Kai-lan 3 1.46 0.43 0.22 0.13 0.18
Total 91 14.07 2.25 1.89 1.55 1.61
Average 2.35 0.38 0.32 0.26 0.27
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and ‘kale K 3600’ (>75 %) (Fig. 2a, Supplementary
Table 2).

Genetic diversity among members in each
of the six varietal groups

Among the six varietal groups, kohlrabi had the
highest genetic diversity (0.41), while kai-lan exhib-
ited the lowest (0.22) (Table 6). The mean number of
alleles per locus among each of six varietal groups
ranged from 1.46 to 3.81 with an overall mean of 2.35.
The cabbage cultivars demonstrated the highest num-
ber of alleles (3.81), and kai-lan cultivars had the
lowest number of alleles (1.46). The mean of the major
allele frequency within varietal groups varied from
0.32 in cabbage to 0.43 in kai-lan, with an overall
mean of 0.38. These low values for genetic diversity
and number of alleles in kai-lan might be due to the
small number of cultivars used in the analysis.

Variation in heterozygosity

Since the majority of the cultivars used in the present
study were F; hybrid cultivars, we were interested to
know their proportion of heterozygosity at the 69 SSR
loci (Table 1). The level of heterozygosity among 49
cabbage cultivars ranged from 18.8 to 49.3 %. Of
which, the highest level of heterozygosity was
detected in cultivar ‘Megaton’, while the lowest was
in cultivar ‘Primero’. The cultivars ‘Super Grace’ and
‘Aosima’ demonstrated the highest degree of hetero-
zygosity (40.58 %) in broccoli but cultivars ‘Green
Belt’” and ‘BI-15 (Monaco)’ showed the lowest
(26.09 %). Of the five cauliflower cultivars, ‘Orange
Dream’ had the highest level of heterozygosity
(30.43 %) and cultivar ‘Violet Dream’ showed the
lowest (10.14 %).

Interestingly, kohlrabi cultivars showed the highest
mean heterozygosity (41 %) compared to the other
varietal groups. Among nine kohlrabi cultivars,
‘Worldcol” had 52.17 % heterozygosity, while culti-
var ‘Dongchuan’ had 15.94 %. In contrast to kohlrabi
cultivars, kale cultivars exhibited the lowest mean
heterozygosity (8 %) among the six varietal groups.
The highest degree of heterozygosity in kale cultivars
was 8.70 %, which were represented by cultivars
‘Este’ and ‘K 3600’. Meanwhile, the highest hetero-
zygosity level in kai-lan cultivars was 15.94 % which
shown by cultivar ‘K 3608’ from Thailand.
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Discussion
Transferability and diversity of SSR markers

Microsatellite markers are widely known to have high
transferability from the focal species in which they
were identified to other subspecies or even to other
related genera. In Brassica, there are reports of
transferability of microsatellite markers among spe-
cies of the genus (Lowe et al. 2004; Marquez-Lema
et al. 2010; Plieske and Struss 2001). In this study, 148
microsatellite markers derived from several Brassica
species and Arabidopsis thaliana were used to deter-
mine genetic diversity and relationships of B. olera-
cea. Of those markers, 69 (46.62 %) showed perfect
transferability to each varietal group examined herein
and were appropriate for assessing the genetic diver-
sity of a wide range of B. oleracea subspecies. We
found that the remaining 79 markers (53.38 %) were
not suitable for this purpose because they produced
monomorphic or non-specific bands or did not allow
successful amplification. Among the 69 reproducible
and polymorphic markers, 54 (78.3 %) were derived
from the B. oleracea genome and 11 (159 %),
3(4.3 %), and 1 (1.4 %) were derived from B. napus,
B. rapa, and A. thaliana, respectively.

The number of alleles per SSR locus ranged from
2 to 14, with an average of 5.23, which is significantly
higher than those of the previous reports in which 2 to
8 alleles per locus with an average of 4.46 (Tonguc and
Griffiths 2004) and 2-9 alleles per locus with an
average of 4.27 (Louarn et al. 2007) were found. In
addition, the finding of many rare alleles reveals a
unique source of genetic diversity within B. oleracea
varietal groups. On the other hand, we also identified
18 SSR markers producing 27 cultivar-specific allele
markers (CAM) that can differentiate 22 cultivars
from the others (Table 4). These markers provide an
effective means for cultivar identification among the
rising number of commercial cultivars and will be
useful for cultivar protection and DUS testing.

Although a relatively low PIC value was found in
this study (0.40, compared to above 0.5 in previous
studies (Louarn et al. 2007; Tonguc and Griffiths
2004)), the diversity of SSR markers here proved to be
a reliable tool for cultivar discrimination and identi-
fication. We could discriminate all the cultivars except
two using the 69 SSR markers, which will also be
helpful for DUS testing in relation to the release of
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new cultivars (Louarn et al. 2007). Even though our
SSR markers had high discrimination power, we could
not differentiate two cultivars, ‘Charmant’ and ‘GC
60’, from Japan and India, respectively. We presume
that they might have been sold with different cultivar
names in different countries but originate from the
same cultivar. This result is in agreement with
previous reports, which showed that several varieties
with different names might be genetically identical
(Jain et al. 2004). We also found that many cultivars in
the same clade originated from different seed suppli-
ers, in agreement with Lu et al. (2009), who found that
cultivars with different origins can be clustered
together in the same group, and Belaj et al. (2003),
who reported that breeding materials were often
shared by a variety of institutions or used as common
elite lines under different names.

Phylogenetic relationships between varietal
groups according to UPGMA and population
structure analyses

The genetic similarity-based analysis of the 91 culti-
vars demonstrated a clear classification into six major
groups with a tendency to cluster within varietal
groups (Fig. 1), except for one kale cultivar ‘Este’ and
one kohlrabi cultivar ‘Dongchuan’. This finding
provides more clarity than earlier studies, which could
not clearly separate several varietal groups (Louarn
et al. 2007; Song et al. 1988; Song et al. 1990; Tonguc
and Griffiths 2004). The results regarding phyloge-
netic relationships are consistent with the expectation
that each varietal group would be classified separately
within its group, considering that each varietal group
remained genetically distinct after selection for sev-
eral millennia (Quiros and Farnham 2011).

Population structure analysis also showed that the
91 cultivars could be divided into six groups, with
strong similarity to those found by UPGMA dendro-
gram (Fig. 1). The main difference was that the
population structure analysis divided cabbage culti-
vars into two different groups: cabbages with flattish
head shape were positioned in group I (C1), whereas
round head-shape cabbages were in group II (C2). In
addition, cauliflower and kai-lan cultivars were placed
into the same group (C4).

In a previous study, cabbage landraces in China
did not show any association between the molecular
classification based on AFLP data and head type

(Kang et al. 2011). However, in our UPGMA and
population structure analyses, cabbage cultivars
formed two distinct groups that coincided with the
classification based on head shape, suggesting that
the head shape of cabbage is genetically more
distinct compared to other agronomic traits, such as
maturity, head size and bolting type. This result also
may signify that a gene responsible for the head
shape of cabbage is associated with SSR markers
used in the present study.

Although the UPGMA dendrogram clearly classi-
fied most commercial cultivars into varietal groups,
the population structure analysis placed cauliflower
and kai-lan into the same group. Kai-lan, also known
as Chinese broccoli, has vestigial flower heads similar
to those of broccoli. Meanwhile, cauliflower is char-
acterized by its undifferentiated inflorescences, called
curd, resembling those in broccoli. Based on their
characteristics, cauliflower and kai-lan have similar
traits that are related to broccoli cultivars. Thus, even
though cauliflower and kai-lan are different varietal
groups, the similarity of their flower heads could be
related to their presence together in the same group.

When inferred ancestry was computed, 79 out of 91
B. oleracea cultivars had more than 75 % of their
shared ancestry derived from one of the six groups
(Fig. 2a, Supplementary Table 2). The remaining 12
cultivars were identified as admixtures having
52-73 9% shared ancestry with a major group (Fig. 2b,
Supplementary Table 2). The low level of admixture
types found among the B. oleracea cultivars may be a
result of breeding programs that mainly focus on
developing new cultivars within the same varietal
group. Therefore, the gene flow occurred only within
each varietal group. Overall, our population structure
analysis provides new insight into the genetic structure
and relationships among six varietal groups of
B. oleracea, which has previously been unclear.

Allele diversity and heterozygosity

Genetic variability within varietal groups was rela-
tively high, with an average of 0.32 and 2.35 for
overall gene diversity and alleles per locus, respec-
tively. Among the six varietal groups, kohlrabi
cultivars showed the highest gene diversity (0.41),
followed by cabbage cultivars (0.39). Conversely,
cabbage cultivars had an average of 3.81 alleles per
locus, higher than the average number of alleles (2.81)
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in kohlrabi cultivars (Table 6). A previous study
reported that the gene diversity in cabbage, broccoli
and cauliflower were 0.59, 0.58 and 0.56, respectively
(Louarn et al. 2007), which is higher than found in our
study. Meanwhile, a recent study of genetic diversity
in kale landraces, cultivars and wild populations in
Europe reported a total gene diversity of 0.32 (Chris-
tensen et al. 2010), which are similar to our findings.
The variation in gene diversity and allele numbers per
locus among cultivars in each varietal group repre-
sents how wide and diverse the genetic resources that
were used for breeding programs. In this study,
kohlrabi and cabbage cultivars showed the highest
gene diversity and allele numbers per locus, respec-
tively, indicating that relatively diverse wild resources
were included in the development of desirable culti-
vars in these two varietal groups.

Among the six varietal groups, kohlrabi cultivars
exhibited the highest heterozygosity value (0.41),
followed by cabbage cultivars (0.38). Meanwhile, kale
and kai-lan cultivars showed lower heterozygosity
levels (0.08 and 0.13, respectively) than the other
varietal groups, indicating that cultivars in these two
groups may not be F; hybrids, but rather inbred lines.
The higher values of heterozygosity among cultivars of
kohlrabi and cabbage coincided with their higher values
for gene diversity and allele numbers per locus. In
addition, we can conclude that most breeders have a
good F; seed production system using self-incompat-
ibility or male sterility for these two varietal groups.
Because heterozygosity plays an important role in
performance of the F; hybrid (Syed and Chen 2005), it
is important to know the heterozygosity level of each F;
hybrid cultivar. One cabbage cultivar ‘Megaton’, two
broccoli cultivars ‘Super Grace’” and ‘Aosima’, and one
kohlrabi cultivar “Worldcol” were F; hybrid cultivars
and showed the highest heterozygosity levels (over
40 %). Among cauliflower cultivars, ‘Orange Dream’
showed the highest heterozygosity (30.43 %). It will be
interesting to explore whether the higher heterozygosity
levels we found here do indeed correspond to superior
agronomic performance. In addition, the identified F,
hybrid cultivars containing high heterozygosity are
good candidate breeding and genetic materials because
they have higher allele diversity.

With regard to molecular markers, we found that
marker CB10229 has the highest contribution in
detecting heterozygous individuals across 91 culti-
vars. A total of 97 % cultivars were identified as
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heterozygous. This finding suggests this locus as a
potential marker for predicting hybrid performance or
heterosis in hybrid materials considering the strong
correlation between molecular marker heterozygosity
and hybrid performance or heterosis (Zhang et al.
1996). By contrast, marker MR133.1 identified only
3 % heterozygous cultivars across 91 cultivars. This
result is interesting because that marker detected most
cultivars as homozygous, even though the majority of
cultivars used in this study were F; hybrids. This
suggests that the MR133.1 locus remained highly
conserved across B. oleracea germplasms.

Summary

The information regarding genetic diversity, relation-
ships, heterozygosity levels and population structure
among 91 commercial B. oleracea cultivars presented
here is important for future breeding programs and
will facilitate the utilization of those cultivars for crop
improvement. This study also demonstrates the use-
fulness of a set 69 microsatellite markers as a potential
tool for assessing genetic diversity, detecting hetero-
zygous individuals, differentiating and identifying
cultivars, DUS testing, and F; seed purity testing in
breeding programs.
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