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ABSTRACT Miniature transposable elements (mTEs) such as miniature inverted-repeat transposable element (MITE), terminal
repeat retrotransposon in miniature, and short interspersed element are exquisite sources for marker development. mTEs are short,
non-autonomous and stably inherited. The high-copy members are widely distributed into the gene rich euchromatic regions. Here, we
conducted a modified transposon display (TD) for a high-copy MITE family, BraSto-2 (Bs2). The Bs2-specific primers derived from
conserved sequences of Bs2 members as well as Msel adapter primers were used for polymerase chain reaction (PCR) in two Brassica
rapa accessions, ‘Chiifu’ and ‘Kenshin’. The pooled PCR products were sequenced by Illumina sequencing platform instead of
high-resolution gel electrophoresis. Subsequent in silico-based insertion polymorphism (IP) analysis (next-generation sequencing
[NGS]-based Bs2 transposon display) was conducted, which generated more than 99 putative polymorphic insertion sites between
‘Chiifu’ and ‘Kenshin’. Among 90 successful PCR amplification, 34 showed Bs2 IP (IP-Bs2) between ‘Chiifu’ and ‘Kenshin’
accessions, 27 and seven ‘Chiifu’- and ‘Kenshin’-unique insertions, respectively. When the 90 IP-Bs2 primer sets were applied to 10
Brassica accessions, including four additional B. rapa and B. oleracea accessions, 69 (76%) showed insertion olymorphism among
accessions. The IP-Bs2 were evenly distributed through all the chromosomes and provide rich polymorphism among various B. rapa
and B. oleracea accessions demonstrating the usefulness of these markers for various genetic diversity and molecular breeding studies
in Brassica. In addition, NGS-based TD will be applicable to various high copy transposable elements family for high throughput and
rapid polymorphic marker development which will be helpful for efficient plant genomics and breeding purposes.
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INTRODUCTION

Transposable elements (TEs) account for the largest
fraction (up to 85%) of most plant genomes and play
tremendous control on the genome function and evolution
(Feschotte 2008; Arkhipova et al. 2012; Bire and
Rouleux-Bonnin 2012). TEs are classified into either DNA

transposon or retrotransposon based on their transposition
mechanisms. Likewise, TEs can be grouped as either
autonomous (aTEs) or non-autonomous (nTEs) depending
on the presence or absence of functional genes for trans-
position, respectively (Wicker et al. 2007; Sampath and
Yang 2014). The nTEs include large retrotransposon
derivatives, terminal repeat retrotransposon in miniature
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(TRIM), short interspersed elements (SINEs), and
miniature inverted-repeat transposable elements (MITEs)
(Casa et al. 2000; Shedlock and Okada 2000; Witte ef al.
2001). Due to their miniature structure (<1,000 bp) TRIM,
SINEs, and MITEs are also referred to as miniature
transposable elements (mTEs) (Wessler ef al. 1995; Okada
et al. 1997; Casacuberta and Santiago 2003; Feschotte and
Pritham 2007). Important characteristics of mTE such as
their ubiquity, stable inheritance, dispersed and high-copy
presence in the genome, and close association with genic
regions provide better opportunity for marker development
(Sampath and Yang 2014; Sampath et al. 2015).

DNA markers are used in a wide range of genomic and
breeding applications such as construction of genetic
linkage maps, genomics assisted breeding, genome-wide
association studies and evolutionary studies (Purugganan
and Wessler 1995; Casa et al. 2000; Kwon et al. 2007,
Yaakov et al. 2012; Varshney et al. 2013). DNA markers
have been developed using various methods like random
amplified polymorphic DNA, restriction fragment length
polymorphism, simple sequence repeats, amplified
fragment length polymorphism (AFLP), sequence
characterized amplified region, and single nucleotide
polymorphism (Agarwal ez al. 2008; Kalendar et al. 2011;
Varshney et al. 2013). Moreover, development of
polymorphic markers between close relatives or same
species are laborious and time consuming due to its high
homologous nature. Combination of multiple marker type
provides better genome coverage for genetic linkage map
and association map (Agarwal et al. 2008).

TE-based molecular markers such as inter-retrotrans-
poson amplified polymorphism, retrotransposon-micro-
satellite amplified polymorphism, sequence-specific am-
plification polymorphism, insertion polymorphism based
on retrotransposon and DNA transposon, inter-MITE
polymorphism and transposon display (TD) (Agarwal et al.
2008; Kalendar et al. 2011; Shirasawa et al. 2012) have
been successfully applied for the various genomics
purposes such as genetic diversity, inspection of clonal
variation, identifying unambiguous gene flow between
closely related species and breeding (Deragon and Zhang
2006; Bire and Rouleux-Bonnin 2012; Carrier et al. 2012).
DNA polymorphisms are used to identify molecular

markers for important agronomic traits controlled by single
gene or quantitative trait loci (Monden et al. 2009;
Kalendar et al. 2011; Fattash et al. 2013). TD is a modified
AFLP method which target the transposon to detect TE
insertion polymorphisms (Casa et al. 2000). Using
traditional gel based TD analysis has lot of limitations to
develop high quality marker due to high copy nature of the
mTEs. Also gel based TD requires more time, professional
skill to recover and sequence the polymorphic bands. Most
importantly it requires multiple rounds of experiment to
clearly amplify all or most of the mTE insertions (Casa et
al. 2004; Kwon et al. 2007).

Next-generation sequencing (NGS) provides fast, accu-
rate, and cost effective way to determine the order of
nucleotide bases by parallel sequencing of DNA/RNA
fragments which has wide range of application towards
complete decoding and genomics research for crop
improvement by advanced genotyping (Patel ez al. 2015). It
can be successfully applied for multiplexing with many
accessions or population in a single step using barcode
sequence as tags (Varshney et al. 2009; Wood ef al. 2010;
Davey et al. 2011; Zhang et al. 2011). Taking advantage of
the ubiquitous and random distribution nature of the mTEs,
we developed large scale markers for B. rapa genome using
a high copy stowaway MITE family, BraSto-2 (Bs2)
(Sampath et al. 2013). Bs2, a stowaway MITE family
used for the display analysis was recently characterized
and comparatively analyzed, and was found out to be
present as high copy (500-1,500) in the Brassica genome
(Murukarthick et al. 2014; Sampath et al. 2014). Here, we
developed a TD for the Bs2 members by applying NGS
sequencing to uncover the insertion polymorphism and
develop large-scale polymorphic markers mediated by
recent insertion polymorphism of the Bs2 members
(IP-Bs2 markers) among Brassica accessions. The IP-Bs2
markers are clearly identified in agarose gel-based markers
which can be applied for various molecular breeding

purposes in Brassica.
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Table 1. List of accessions used for the display and insertion survey.

No. ID Species Accession no. Reference

1 Brl Brassica rapa ‘Chiifu” (C) (Wang et al. 2011)
2 Br2 B. rapa ‘Kenshin’ (K) (Sampath et al. 2013)
3 Br3 B. rapa oC 1 (Lee et al. 2014)
4 Br4 B. rapa oC 2 (Lee et al. 2014)
5 Br5 B. rapa YE 1 (Lee et al. 2014)
6 Br6 B. rapa YE 2 (Lee et al. 2014)
7 Bol Brassica oleracea C1234 (Lee et al. 2015)
8 Bo2 B. oleracea Cl1184 (Lee et al. 2015)
9 Bo3 B. oleracea C1235 (Lee et al. 2015)
10 Bo4 B. oleracea C1176 (Lee et al. 2015)

MATERIALS AND METHODS

Plant materials and genomic DNA extraction

Genomic DNA from a total of ten accessions from B.
rapa and B. oleracea were extracted using modified
cetyltrimethylammonium bromide method (Allen et al.
2006) and the quality of the DNA were quantified using a
NanoDrop 1000 spectrophotometer (Thermo Fisher
Scientific, Wilmington, DE, USA). High quality DNA was
used for TD and insertion polymorphism survey (Table 1)
(Lee et al. 2014, 2015).

NGS-based Transposon display of Bs2 MITE family

A high-copy MITE family, Bs2, was used for NGS-
based TD analysis against two B. rapa accessions, ‘Chiifu’
and ‘Kenshin’, with some modifications from gel-based
MITE display (Casa et al. 2004) (Fig. 1). Briefly, 500 ng of
the genomic DNA was digested with a tetra-cutter Msel at
37°C for 2 hours and the digested DNA was ligated with
Msel adaptor forward (5’-GACGATGAGTCCTGAG-3"),
Msel adaptor reverse (5’-TACTCAGGACTCAT-3")
sequences using one unit of T4 ligase enzyme at 16°C for 3
hours. The ligated products were diluted to five-fold with
sterile water then subjected to pre-selective amplification
using primer specific to Msel adaptor sequence (Msel+0
5’-GACGATGAGTCCTGAGTA-3’) and a Bs2 specific
degenerative primer (Bs2 primer: 5’>-CGACTTATAWT-
AAAAAACGGAGGG-3’) (Fig. 2). Degenerative primer
was developed on the conserved sequence based on

multiple sequence alignments of the Bs2 members.

Pre-amplification reaction mixture (50 pl total) consisted
of 10 ul ligated DNA, 1x polymerase chain reaction (PCR)
buffer, 0.2 uM of each primer, 2.5 uM dNTPs, and 1 unit
Taq DNA polymerase (Vivagen, Seongnam, Korea). PCR
was carried out as 5 minutes at 94°C, 35 cycles of 95°C for
30 seconds, 56°C for 30 seconds, and 72°C for 1 minute,
with a final 20-minute extension at 72°C, using ABI
thermocycler (Applied Biosystems, Santa Clara, CA,
USA). A 5 ul of pre-amplification PCR products were
separated on 2% agarose gel, and the gels were stained with
ethidium bromide and visualized on a UV transilluminator.

After the pre-amplification process, the products from
‘Chiifu’ and ‘Kenshin’ were purified using Qiagen PCR
purification kit (Qiagen, Hilden, Germany). The purified
PCR products were sent for sequencing by Illumina
HiSeq2000 paired-end sequencing platform according to the
manufactures protocol at Labgenomics, Seongnam, Korea
(Fig. 1A). Briefly, the PCR products were pooled from
‘Chiifu’ and ‘Kenshin’ after labeling with two different
[llumina barcode to perform the simultaneous multiplex
sequencing using Illumina HiSeq2000 paired-end multiple
sequencing method. The accession-specific reads were then
extracted from the mixture based on the barcode information.
Pair-end reads from ‘Chiifu’ and ‘Kenshin’ were mapped
against the reference genome of B. rapa ‘Chiifu’ v1.2 to
obtain the physical position. The redundant or duplicate sites
were eliminated and the unique sites were then used for
further analysis. The shared or common sites were manually
identified based on physical position information and

eliminated. The remaining candidate sites which are
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Fig. 1. Next-generation sequencing (NGS) based transposon display. (A) Steps involved in NGS-based transposon display
analysis. The target region (red dotted circle) used for the sequencing. (B) Identification of polymorphism site
(presence/absence of conserved miniature inverted-repeat transposable element [MITE] sequences) by analyzing
reads from the different accessions. PCR: polymerase chain reaction.
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Fig. 2. Structure of the BraSto-2 (Bs2) miniature inverted-repeat transposable element (MITE) and primers for MITE-
display. Primers from the Bs2 consensus region, terminal inverted repeat (TIR) and Msel restriction enzyme site
shown as arrows. Target regions are shown with dotted ovals. P: primers, F: forward, R: reverse. W in primer

sequence is degenerate base symbol can bind to A/T.

Table 2. Summary of reads analysis from NGS-based transposon display of Bs2 MITE family against two Brassica rapa

accessions.

Insertion sites based on in silico mapping

PCR validation

Accession - -
Total Accession speciﬁcz) Success IP-Bs2 among [P-Bs2 aIr.long 10
Brl, Br2 accessions
Brl 127 83 75 27 (36) 59 (78)
Br2 60 16 15 7 (46) 10 (66)

Values are presented as number only or number (%).
“Bs-2 sites specific to Brl and Br2.

NGS: next-generation sequencing, MITE: miniature inverted-repeat transposable element, PCR: polymerase chain reaction,

IP-Bs2: Insertion polymorphism of Brasto-2 (bs2) members.

predicted to be accession-specific were used for validation of
polymorphic insertion analysis (Fig. 1B, Table 2).

Insertion polymorphisms analysis of Bs2 members
(IP-Bs2)

In order to validate the accession-specific insertions,
insertion polymorphisms were surveyed on 10 Brassica
accessions including six B. rapa and four B. oleracea
according to previous approach (Sampath et al. 2013).
Briefly, PCR was carried out using the Bs2 flanking
primers with the condition as 5 minutes at 94°C, 35 cycles
of 95°C for 30 seconds, 56°C for 30 seconds, and 72°C for
1 minute, with a final 20-minute extension at 72°C, using
ABI thermocycler. The 5 pl of PCR products were
separated on 2% agarose gel, and the gels were stained with
ethidium bromide and visualized on a UV transilluminator.
The primers used for MIP analysis and polymorphisms
information are listed in Table 3.

RESULTS

Development of NGS-based Bs2 transposon display

We have performed NGS-based TD for a high-copy
MITE family, Bs2, using [llumina multiplex platform. It is
a modification of a previous MITE display method
reported by Casa et al. (2004), and developed using Bs2
against two B. rapa accessions, ‘Chiifu’ and ‘Kenshin’
(Fig. 1). A degenerate primer was developed from the most
conserved region of the Bs2 by adding a degenerate
nucleotide for the Bs2 specific primer (5’-CGACT-
TATAWTAAAAAACGGAGGG-3’). The Bs2-specific
primer binds to both the end and amplify the flanking
regions for both side as well as amplify with the primer
based on Msel adaptor sequence (Fig. 2). Thus, we tried to
find the insertion polymorphism of Bs2 members (IP-BS2)
between B. rapa ‘Chiifu’ and ‘Kenshin’ accessions. NGS
Pair-reads were derived from the Bs2 flaking regions were
mapped on to the B. rapa ‘Chiifu’ pseudo-chromosome
sequences (Wang et al. 2011). Reads showed 1-25x
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coverage against the target MITE flanking regions.
Accession-specific Bs2 insertion sites for B. rapa ‘Chiifu’
and ‘Kenshin’ were identified by extensive in silico and
manual analysis. A total of 127 and 60 perfectly paired
insertion sites have been obtained from B. rapa ‘Chiifu’
and ‘Kenshin’ accessions, respectively (Table 2). Com-
parative analysis of candidate sites based on the physical
position information revealed 83 and 16 insertions that
were predicted to be unique to ‘Chiifu’ and ‘Kenshin’
accessions, respectively and 44 insertions were common
between both accessions. These accession-specific candi-
dates were used for validation by designing specific primer

combinations for each site to detect insertion poly-

(A) Specific insertion - B. rapa (Chiifu)
B. rapa (Chiifu)

B. rapa (Kenshin)

(B) Specific insertion - B. rapa (Kenshin)
B. rapa (Chiifu)

B. rapa (Kenshin) —— ey

_-_ﬁ—g— B2

morphism (Table 3).

Validation of the IP-BS2 markers

PCR validation analysis was done for all of the 99
putative Bs2 insertion polymorphic candidates identified
from in silico analysis. Out of 83 putative ‘Chiifu’ specific
insertions, 75 were successfully amplified in which 27
(36%) candidates have produced desirable polymorphic
insertions between ‘Chiifu’ and ‘Kenshin’ while 59 (78%)
was observed among 10 accessions (Fig. 3A, D). Similarly,
out of 16 putative ‘Kenshin’-specific targets, 15 were
successfully amplified. Seven (46%) polymorphic in-
sertions between ‘Chiifu’ and ‘Kenshin’ while 10 (66%)

(D)

Br3 Br4 Br5 Br6 Bol Bo2 Bo3 Bo4 M

|
[

lﬁ_l
27175 (36%)

(E)

[ __J
=

== EE= ——
- == 7116 (44%)
(C) Shared insertion (F)
B. rapa (Chiifu) —_— e
] _—— -
[
B. rapa (Kenshin) = L )

T
56/90 (62%)

Fig. 3. Validation of sequencing based next-generation sequencing-based transposon display analysis of BraSto-2 (Bs2)
miniature inverted-repeat transposable element (MITE) family members by insertion polymorphism survey. (A) Bs2
family member shows Brassica rapa ‘Chiifu’ specific insertion compare to ‘Kenshin’. (B) Bs2 family member
shows B. rapa ‘Kenshin’ specific insertion compare to ‘Chiifu’. (C) Shared or common insertion Bs2 between
‘Chiifu’ and ‘Kenshin’. Fig. 3D-F show the corresponding gel validation of A, B, and C, respectively. Black and
grey arrow head indicate the MITE insertion (full site) and non-insertion (empty site), respectively. Star indicates
the polymorphism in Br-6 produced by a shared insertion of ‘Chiifu’ and ‘Kenshin’. Fig. 3D-F are based on the

primers 3, 34, 88 from Table 3, respectively.
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was observed among the 10 accessions (Fig. 3B, E). We
observed 62% (56/90) of the insertions which were
predicted to be polymorphic based on sequence analysis
actually have a monomorphic pattern as shared insertions
between the two accessions (Fig. 3C, F). In our approach
we have identified 38% of the polymorphic insertions from

a highly conserved MITE family in the B. rapa genome.

Genomic distribution of Bs2 and IP-BS2 markers in
B. rapa genome

We surveyed genomic distribution of those polymorphic
insertion on B. rapa ‘Chiifu’ reference genome. The B.
rapa ‘Chiifu’ pseudo-chromosome sequences (version 1.2)
contains 76 copies with 95:95 coverage of Bs2 members
(hit with longer than 247 bp as 95% sequence homology)
and 401 copies with 80:80 coverage (hit with longer than
208 bp as 80% sequence homology) Bs2 members. The 401
Bs2 members were shown on the in silico map which are
distributed all over the chromosome regions. Among them,
207 (51%) were present within <1 kb vicinity of the gene
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one & :;
X
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3 >
100 |- * *f
> *
7
15m |-
> > B »
zoM | * x
*» *p *B »
]
25m |-
| €
>
30M |-
35m |
dom L

(Sampath et al. 2013). In silico map with polymorphic
insertion between ‘Chiifu’ and ‘Kenshin’ accessions show
its random distribution (Fig. 4). Finding polymorphisms in
random positions of the chromosome will be highly helpful

for molecular breeding studies (Sampath et al. 2013).

DISCUSSION

NGS-based transposon display provides advantage for
developing high-throughput insertion polymorphism
markers

With the advent of NGS technology, simultaneous
sequencing of more than one genome in a population is
made possible using barcodes. Also, large scale sequencing,
marker discovery, validation and assessment is possible for
genomes with or without available high-quality reference
genome information. Integration of NGS technology into
the TD to develop NGS-based TD is not only time-saving
but also produces stacks of information. Though MITEs

AOG RO AGE AGS AL

B *p

v

2 *»

Fig. 4. In silico map of BraSto-2 (Bs2) members showing the surveyed and newly identified members on the Brassica
rapa pseudo chromosome. Red bars represent the 401 Bs2 members on the B. rapa pseudo-chromosome. Black
and yellow arrowheads indicate that the 90 in silico candidate members of Bs2 utilized by insertion polymorphism
survey. Green and pink stars indicate the B. rapa ‘Chiifu’ and B. rapa ‘Kenshin’ specific insertions, respectively.
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belong to Class II TEs (DNA transposons) it can amplify
into hundreds of thousands of copies in a genome, which
could be through positive selection or adaptive gap repair
mechanisms or mobilization of autonomous partner
element (Naito et al. 2009; Naito et al. 2014). MITE has
been accumulated and amplified to high copies ( >22,000
in rice) in a genome (Naito ef al. 2009; Naito et al. 2014).
Likewise, Bs2 is present in a very high copy in the B. rapa
genome (up to 500-1,500 copies) which is one of the
highest copies among the 20 other MITE families in the
present analysis (Sampath ef al. 2015). Our recent analysis
shows that Bs2 has differential amplification in copy
numbers after Brassica speciation and up to now. But due
to the high conservation of Bs2 in B. rapa, identification of
polymorphic insertion is a very difficult task. Only 6%
(3/50) polymorphic sites were identified between the B.
rapa ‘Chiifu’ and ‘Kenshin’ accessions (Sampath et al.
2013).

Here, high-copy MITE family, Bs2, was analyzed by
NGS-based TD against two B. rapa accessions ‘Chiifu’
and ‘Kenshin’ revealed that abundant polymorphic infor-
mation (41%) suggest that the importance of NGS-based
TD approach for high-throughput marker development.
However, we could identify about 59% of the in silico
candidates were shown shared insertion upon PCR
validation. The discrepancy between sequence analysis
which showed polymorphism between ‘Chiifu’ and
‘Kenshin’ and the actual PCR product may be due to lack of
sequencing of the particular MITE member in the
‘Kenshin’ or ‘Chiifu’ genome. This error can be minimized
by increasing the depth of the sequencing. Also, we found
39 insertions that were absent in the reference genome
suggesting that the actual genome has more number of Bs2
insertions that were not included in the reference genome.

Our analysis showed that NGS-based TD will be a very
useful method for high throughput MITE insertion
polymorphic (MIP) marker development because the NGS
analysis provides the flanking sequence information for
MIP marker development in a short period of time (Table
3). Moreover, NGS-based TD approach will amplify most
or all copies of multiple mTE families in a single analysis
which will reduce the cost and time. More curation of data

analysis like comparative analysis with more depth reads

will increase the polymorphism ratio. This approach will be
also effective to other TEs like TRIM and SINEs, and is
also feasible for tandem repeats and any other conserved
domains, which has a moderate to high copy number like
centromeric tandem repeats, LRR-genes and R-genes.
Furthermore, NGS-based TD has high advantage over
conventional gel-based MITE display. Because, due to
multiple number of bands, identification and development
of markers through conventional gel based TD analysis is
very difficult and time consuming and demands pro-
fessional skill. Furthermore, TD requires multiple rounds
of selective amplification in order to amplify all or most of
the members of this high copy MITE family like Bs2 which
cannot be amplified/visualized by a single gel analysis.
However, NGS-based TD can overcome those limitations
and can even be performed for multiple MITE families and
for multiple number of accessions in a single analysis,
emphasizing the importance of NGS-based TD for
developing high-quality markers.

Application of IP-Bs2 makers for various molecular
breeding purposes

The stable heritability, abundance and co-dominant
nature of IP makers give them more advantage over other
markers. Moreover, makers developed from IP approach
have been used for various molecular breeding studies such
as genetic diversity analysis, trait identification, and
candidate gene analysis (Monden et al. 2009; Yaakov ef al.
2012; Sampath et al. 2014). Our analysis based on the
genome-specific MITE insertion showed high genetic
diversity among various B. rapa accessions suggesting the
importance of the MIP markers for the diversity analysis
(Fig. 3D). Moreover, the markers which didn’t show any
polymorphisms between the ‘Chiifu’ and ‘Kenshin’
accession have produced polymorphisms between the other
B. rapa accessions (Fig. 3F). This indicates that not only the
34 polymorphic markers but also the other 56 markers are
highly valuable for various molecular applications such as
high density genetic mapping, diversity and evolution
studies as well as identification of the genetic components of
germplasm with agronomically important traits to B. rapa
and its relatives. This research validates the usefulness of

NGS-based TD in high-throughput marker development in a
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short period. Moreover, this study will provide new insights
on effective utilization of mTEs for genomic studies.
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